Aperture of counter telescopes for parallel pairs of particles

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1971 J. Phys. A: Gen. Phys. 4 L18
(http://iopscience.iop.org/0022-3689/4/1/023)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.72
The article was downloaded on 02/06/2010 at 04:25

Please note that terms and conditions apply.

L18 Letters to the Editor

Department of Electron Physics and Space Research, University of Birmingham,
D. K. Bedford
P.O. Box 363,

Birmingham, B15 2TT,
England.

Auer, S., et al., 1968, Space Res., 8, 606-16.
Auer, S., and Sitte, K., 1968, Earth and Plan. Sci. Lett., 4, 178-83.
Friichtenicht, J. F., 1964, Nucl. Instrum. Meth., 28, 70-8.
Hansen, D. O., 1968, Appl. Phys. Lett., 13, 89-91.
Shelton, H., Hendricks, C. D., and Wuerker, R. F., 1960, J. appl. Phys., 31, 1243-6.

Aperture of counter telescopes for parallel pairs of particles

Abstract

The difference between the aperture of a counter telescope for single particles and for pairs is explained. Expressions are given for both apertures and the significance of the difference for the interpretation of underground data is indicated.

In a study of groups of cosmic ray muons penetrating underground (Barton 1968) it was necessary to calculate the effective aperture of a telescope for parallel pairs of particles. The details of the calculation were omitted from that paper but, since the concept has given rise to some misunderstanding (Castagnoli et al. 1969, Bibilashvili private communication), it seems useful to explain it more clearly.

Following the notation of Stern (1960), the aperture of a counter telescope for single particles can be defined as $A_{1}(\rho)$, so that the counting rate R_{1} for a particle intensity $I=I_{0} \cos ^{\rho} \theta$ is given by $R_{1}=A_{1}(\rho) I_{0}$.

Figure 1. Telescope geometry.

If the telescope has two rectangular counters of dimensions X and Y at a separation Z (figure 1), then, again following Stern,

$$
A_{1}(\rho)=\frac{1}{Z^{2}} \int_{0}^{X} \int_{0}^{Y} \int_{0}^{X} \int_{0}^{Y} \cos ^{\rho+4} \theta \mathrm{~d} x^{\prime} \mathrm{d} y^{\prime} \mathrm{d} x \mathrm{~d} y
$$

where

$$
\cos \theta=\frac{Z}{\left\{Z^{2}+\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}\right\}^{1 / 2}}
$$

Stern gives a mathematical transformation for evaluating this expression but, if Z is not much smaller than X or Y, it can also be computed by direct numerical integration.

Now consider the response to parallel pairs of particles. The pair counting rate R_{2} is given by $R_{2}=A_{2}(\rho) I_{\mathrm{p}}$ provided the aperture and pair intensity are defined consistently. The definition of I_{p} was given in the previous paper as the number of pairs per steradian crossing a horizontal area of one square metre in a vertical direction per unit time. Its dimensions are $\mathrm{m}^{-4} \mathrm{sr}^{-1} \mathrm{~s}^{-1}$. If the first particle traverses the counter as shown in figure 1, the second must fall within the area $A B C D$ and the available area perpendicular to the direction of the pair is the area $A B C D$ multiplied by $\cos \theta$. Hence the aperture for pairs is:

$$
A_{2}(\rho)=\frac{1}{Z^{2}} \int_{0}^{X} \int_{0}^{Y} \int_{0}^{X} \int_{0}^{Y} \cos ^{\rho+5} \theta\left(X-\left|x-x^{\prime}\right|\right)\left(Y-\left|y-y^{\prime}\right|\right) \mathrm{d} x^{\prime} \mathrm{d} y^{\prime} \mathrm{d} x \mathrm{~d} y .
$$

This formula should be correct provided the dimensions of the apparatus are small compared with the average separation between the particles; that is, the decoherence curve for the pairs is relatively flat.

As an example of the effect of this formula, the results of Chaudhuri and Sinha (1963) can be considered. The dimensions of their apparatus were $X=0.75 \mathrm{~m}$, $Y=0.30 \mathrm{~m}, Z=0.85 \mathrm{~m}$, and we assume that $\rho \simeq 2$ for single particles and $\rho \simeq 4$ for pairs at the relevant depth. The computed values are

$$
\begin{aligned}
& A_{1}(2)=0.0502 \mathrm{~m}^{2} \mathrm{sr} \\
& A_{2}(4)=0.00522 \mathrm{~m}^{4} \mathrm{sr} .
\end{aligned}
$$

Their observed rate of $0 \cdot 11 \pm 0.02$ per day therefore yields a vertical pair intensity of $21 \pm 4 \mathrm{~m}^{-4} \mathrm{sr}^{-1} \mathrm{~d}^{-1}$; Castagnoli et al. plot this point at $6 \pm 1 \cdot 2$, presumably through using a different expression for the aperture.

I am indebted to Dr E. W. Kellermann and Dr H. W. Hunter for discussions which have helped to clarify my views.

Department of Physics,
Northern Polytechnic, London, N7 8DB, England.
barton, J. C., 1968, J. Phys. A: Gen. Phys., 1, 43-54.
Castagnoli, C., Picchi, P., and Verri, G., 1969, Nuovo Cim., 61B, 290-301.
Chaudhuri, N., and Sinha, M. S., 1963, Proc. Int. Conf. on Cosmic Rays, Jaipur, 1963,
(Bombay: Commercial Printing Press), pp. 106-10.
Stern, D., 1960, Nuovo Cim. Suppl., 16, 153-8.

